A Corrosion Management Program (CMP) manual will include the process design and operating conditions, basis of materials selection, corrosion mitigation, inspection strategy as well as corrosion monitoring methodology. The manual needs also to include the risk assessment of critical assets to determine risk severity, monitoring techniques to ensure that the assets can be operated in a safe and reliable manner and the appropriate inspection methods to manage identified risks to maintain the integrity of the critical upstream surface facilities assets. It should also highlight the critical integrity operating window (IOW) parameters and IOW limits to be maintained during service. An IOW programme, its importance, and how to establish
IOW to enhance asset integrity is discussed in detail in reference 2.
The CMP manual needs to be revised at regular intervals to highlight recent inspection results, risk assessment data as well as changes in process conditions and additional monitoring requirements.
Corrosion monitoring as documented in a CMP manual can be conducted using a number of direct and indirect monitoring techniques, and the merits and limitations of each monitoring technique need to be considered. For effective corrosion monitoring multiple monitoring strategies need to be used and the collected data needs to be analysed along with appropriate process data. Details of various corrosion monitoring techniques for field applications can be found in the recently revised NACE publication (3). Installing coupons and corrosion monitoring probes can be useful tools for internal corrosion monitoring. These are considered intrusive monitoring types as they are exposed to pipeline interiors through appropriate access fittings. Proper safety precautions, following the work permit procedures, along with the deployment of suitably trained personnel are necessary for safe removal and installation of coupons from the pipelines during service. The NACE document “Preparation, Installation, Analysis and Interpretation of coupon data in oil field operations” serves as a useful guideline (4). Corrosion coupons are usually removed at 60-90 day intervals in order to establish long term corrosion rate trends, while the probes are useful to monitor the corrosion rates in real time. Suitable display of the probe’s output in the facility control room will enable the continuous monitoring of corrosion rates, and to alert the operating personnel in the event of higher corrosion rates in order for the required corrective action to be taken. Both wired and wireless configurations are available. The economics need to be taken into account before selecting suitable corrosion monitoring solutions. For pipelines requiring corrosion inhibitor injection, it is essential to have the probes/coupons installed upstream and downstream of the corrosion inhibitor injection point to monitor the performance of corrosion inhibitors. For reliable field corrosion data, it is essential to install the coupons at locations where corrosion is occurring, or most likely to occur, such as high velocity zones, water accumulation spots, etc. Careful location selection is vital since installing the monitoring devices at incorrect locations could obscure the data obtained and its analysis. Linear polarisation probes and electrical resistance probes are used for routine field corrosion intrusive monitoring of the process piping. Linear polarisation probes are commonly used in water systems, while electrical resistance probes can be used in higher resistivity environments. Formation of scales such as sulphide scale, sand erosion, oily/wax deposits at the sensor elements, can affect the accuracy of collected data. As a result, the collected data needs to be analysed carefully to establish a reliable base line reference for meaningful intrusive internal corrosion monitoring data.
In case of nonintrusive monitoring, probes such as thickness measuring sensors using ultrasonic principles can be installed at plant piping exteriors where continuous piping wall thickness monitoring due to corrosion/erosion is warranted, and a number of such systems are commercially available. These sensors can be installed at multiple locations and the wall thickness data, sensor battery life, and the temperature data, can be communicated in real time to the operating facility control room. The main advantage of nonintrusive monitoring is that the monitoring can be conducted when the plant is in service. In addition, critical piping at higher operating temperatures, and at elevated and inaccessible locations can be monitored. This approach offers cost-savings by eliminating the scaffolding requirements especially for elevated plant piping sections as well as avoiding the costs associated with the operating facility downtime to conduct the conventional thickness monitoring which would otherwise be required. By analysing the collected data, proactive corrective measures to mitigate piping corrosion along with scheduling the piping replacement in advance with the maintenance and operations team can be carried out. This approach enables the monitoring of the critical piping wall thickness condition to prevent the loss of containment due to internal corrosion thus facilitating the operation of the plant assets with highest safety and integrity, as well as to minimise HSE related events. As well as ultrasonic sensors, other methods such as eddy current testing, electromagnetic field mapping and battery free ultrasonic sensors are also considered nonintrusive monitoring types.
To manage critical upstream assets, microbiologically induced corrosion (MIC) also needs to be monitored and managed whenever applicable. Periodic process water sampling to monitor the planktonic bacterial counts, dissolved oxygen content, biocide residuals can be carried out. In oil and gas systems bio-film monitoring probes, samples from removed pipe sections, debris collected during pipelines scraping to monitor the sessile bacteria present in the system along with water quality parameters, provide good information (5). A number of test kits are commercially available to quickly monitor the biocide residual in the field and to initiate the required corrective actions. It is equally important to document the results and the implemented corrective actions to establish sound historical records.
To mitigate external corrosion threats, parameters such as periodic cathodic protection (CP) potential, current flowing in the structure, CP rectifier potential/current output levels, anode bed condition of underground assets, need to be monitored and managed within acceptable limits. Most of the underground carbon steel piping systems are usually protected by suitable protective coating systems supplemented by properly designed cathodic protection systems. Periodic visual monitoring needs to be carried out at excavated sections of pipelines to inspect the coating condition and to mitigate any external corrosion threats, and the monitored data along with inspection results should be documented.
When selecting the optimum corrosion monitoring solution from the wide range of available options for external and internal corrosion monitoring, the engineering and operational requirements and monitoring objectives, need to be considered, and thus by implementing a robust corrosion monitoring system combined with an effective data analysis, inspection and maintenance strategy, timely remedial measures, the critical upstream oil/gas assets’ integrity can
be managed in an efficient and sustainable manner.
Dr. H.S. Srinivasan, Saudi Aramco
References:
(1) API RP 571-2020 Damage Mechanisms Affecting the Fixed Equipment in the Refining Industry.
(2) API RP 584-2014 Integrity Operating Windows.
(3) NACE TR3T199-2020 Techniques for Monitoring and Measuring Corrosion and Related Parameters in Field Applications,
Houston, TX.
(4) NACE SP0775-2018 Preparation, Installation, Analysis and Interpretation of Corrosion Coupons in Oil field Operations, Houston TX.
(5) TM0194-2014-SG, Field Monitoring of Bacterial Growth in Oil and Gas Systems.