

Corrosion Engineering

'Adding Value' by Billy Morrison

Agenda

- Setting the scene;
- Overview of Integrity Documents;
- Baseline Surveys;
- Operations;
- Material Selection;
- Questions;
- Summary

Dr. Heike Hoffman

SRB, Fe counts, Sulphide Counts etc.

' The trend is your friend'

In our case, the trend is not or friend!

Used to be less \$60 for a year

Even Lower for Even Longer

Brent Crude \$43/barrel

Integrity Management Overview

RBI Methodology

- Data Collated;
- Corrosion loops / systems defined;
- Risk Assessment Performed;
- Inspection Techniques and Intervals defined;
- Equipment WSEs/Passports produced.

Screening Tool

- Threat credibility assessment;
- Based on input criteria for component, software will remove all non-credible threats.

RBI/RBA Tool

System Input Parameters			Screening Algorithm	Severity Assessment Guidance					Risk Level				
Parameter	Data	Units		Gas export line	Topsides	Riser							
Material	AISI 316L		CUI	Safety	5	5							
Coating	3LPPE			Business	5	5							
Insulation	Yes			Environment	2	2							
Within crane radius	No			Governing severity	5 (S, B)	5 (S, B)							
Offshore Environment	Yes		CUI Screening Process	Oil export line	Topsides	Riser							
Piping Supports present	Yes			Safety	4	4							
Dead Leg Present	No			Business	5	5		٨	D	c	D	E	
Adjacent to rotating equipment	Yes			Environment	4	4			D	C	U	L	
			Is equipment externallyNo	Governing severity	5 (B)	5 (B)	5						
Service Type	Gas			Production (infield) line	Topsides	Riser							
Service Mode	Intermittent		Not credible – remove from RBI	Safety	4	4	4						
Operating Temperature	15	°C	Yes	Business	4	4							
Operating Pressure	200	barg	Carbon Steels	Environment	4	4	2					v	
CO ₂ Content	10	ppm	13 temp range 12°C to 175°C3 No	Governing severity	4 (S,B,E)	4 (S,B,E)	5					^	
O ₂ Content	0	ppm	Service is Continuous Stainless Steels	WI line	Topsides	Riser	2						
H ₂ S Content	30	psia	intermittent?	Safety	4	4	2						
Elemental Sulpur Content	0	ppm		Business	3	4	1						
Organic Acid Content	15	ppm	Intermittent	Environment	2	2	1						
Water Content	100	ppm		Governing severity	4 (S)	4 (S, B)							
Chloride Content	0	ppm	Yes	Gas lift line	Topsides	Riser							
Flow rate	15	mmscfd		Safety	5	5							
Bacterial Presence	2.00E+03	cells/ml	RBI template	Business	3	4							
				Environment	2	2							
				Governing severity	5 (S)	5 (S)							
				Methanol line	Topsides	Riser							
				Safety	3	3							
				Business	3	4							
				Environment	3	3							
				Governing severity	3 (S,B,E)	4 (B)							

RBI/RBA Methodology (Piping)

• Risk Assessment pro-forma completed in line with API 580 / Company Risk Policy

Corrosion Loop: NC-01-012A Fuel Gas System Risk Assessment										WOOD GROUP KENNY				
Failure Threat/Failure Correguence		Consequences	nsequences Component Condition -		CoF			_oF trigated		As-built Factors / Mitigations		ted Risk	Inspection Activity	Frequency
Category	Category Mode				в	E	R	-	Unmit	••••••••••••••••••••••••••••••••••••••		Mitiga		
Natural Hazard Threats	Extreme Weather	Dent; Crack; Coating damage; LOC.	2011 GVI reported no anomalies attributable to this failure category	1	3	3	1	4	12	Jacket is designed for extremes of environment conditions based on 50 year return.	3	9	GVI	4 yearly or on incident
	Operation outside design temperature Incorrect Operation Threats Operation outside design pressure		Typical operating temperature 10-20°C with a maximum of 32.7°C in 2014. Despite the unknown maximum design temperature of the ESDV, a very low threat is present given the current operating conditions.	4	4	3	1	4	16	ESDV design temperature: Min: +4, Max: HOLD Piping design temperature: Min: HOLD, Max: +82°C Operating over-temperature alarm trips	2	8	None	Not applicable
Operation Threats		Overstress, Embrittlement LOC.	Typical operating pressure is 35barg with a maximum of 42.8barg in 2014. With the SOL and operating pressure significantly below design in this segment, a very low threat exists of overpressure.	4	4	3	1	4	16	Design pressure of ESDV: 110barg; Design pressure of piping: 149barg; SOL: 49.5barg Operating over-pressure alarm trips	2	8	None	Not applicable
	Incorrect operations		No historical operational incidents have been reported.	3	3	3	1	4	12	Covered by operational procedures	3	9	None	Not applicable
Flow Assurance	Hydrates	Hydrate blockage; Business disruption	Dew point temperature is not currently monitored. However, the same system is used as the export gas system, which adheres to export gas requirements.	1	1	1	1	4	4	Pipeline fluids conform export quality requirements.	3	3	None	Not applicable

RBI/RBA Methodology (Structures)

"A systematic overview of the installation is achieved together with a breakdown of the installations risks clearly showing the risk drivers and recommending appropriate actions." ISO 19901-9, DRAFT

Process for Asset Specific RBI

- Divide asset into Structural Critical Components;
- Determine applicable failure modes;
- Conduct situation based likelihood and consequence assessment;
- Rank component risk inline with company risk policy;
- Optimize inspection strategy in line with risk assessment.

Applicable to Topsides and Subsea Structures

Caisson Risk Assessment & Prioritisation

Caissons can be risk assessed individually and inspection targeted at caissons posing highest risk, reducing likelihood of costly intervention or unplanned shutdown.

- Probability of Failure
 - Caisson Design
 - Guide and Dead Weight Support Design
 - Pump Design
- Consequence (Importance of Use)
 - Extent of Shutdown if Caisson Unavailable
 - Anticipated Time to Repair
- Consequence (Hazard Posed)
 - Dropped Object Potential
 - Possible Outcomes / Escalation of Dropped Object Scenario

Inspection Interval Definition

- Intervals defined based on mitigated Risk profile for the system;
- API 570 (piping);
- API 1160 (pipelines).

Inspection Type	Inspection intervals vs risk profile (years)						
inspection Type	Low	Medium	High				
Topsides GVI	3	1 OR 2	0-1				
Topsides WTS	5	2 OR 3	1				
MPI / ECI / DPI	6	3	1				
Rope access GVI	6	3	1				
FMD	6	3	1				
Subsea GVI / CP (ROVSV / Platform)	6	3	1				

Inspection and Maintenance Routines

- Use outputs from Corrosion Risk Assessment and RBI/Passport;
- High Level Inspection and Maintenance Routines what is to be done;
- Planned Maintenance Routines how it is be done;
- Job Plan Pro-forma for input to Maximo.

ALPHA PLATFORM

	Brief Item	Description					
Equipment Identification		E-7623 Steam Turbine Condenser					
	Shell	Low					
Criticality Rating	Tubes	Negligible					
Safety Critical		No					
Dimensions / mm		2300(ø)					
P&ID		46100-200A-7					
Installation Date		01/07/2009					
Construction Design Code		ASME VIII Div.1 (2007 Ed. + 2009 Ad.), ISO 16812 (8th Ed. 2007)					
External Material	Shell/Channel	Carbon Steel (CS)					
	Tubes	MISC. Titanium					
External Material Crade	Shell/Channel	SA 516 Gr 60N					
External Material Grade	Tubes	SB 338 Gr 2					
Internal Material	Shell/Tubes	None					
	Channel	Carbon Steel CLAD MISC. Titanium					
Internal Material Grade	Shell/Tubes	None					
	Channel	SB-265 Gr1					
Corrosion Allowance / mm	Shell/Channel	3.2					
	Tubes	0					
Insulation Type		None					
Design Max. Temperature	Shell/Channel	439					
/ <u>°C</u>	Tubes	50					
Design Max. Pressure /	Shell/Channel	0.69					
barg	Tubes	5					
Operating Max.	Shell/Channel	60.1					
Temperature / <u>°C</u>	Tubes	43.5					
Operating Pressure / barg	Shell/Channel	-0.81					
operating Prossure / Dally	Tubes	2					
Corrosion Loop(s)		CL119 & CL209					
	Categ	orization					

- Automatic generation of inspection outputs from RBI/RBA;
- Live updates to ensure WSEs align with risk profile.

Job Plans

			Maintana /	2 - 4					
			4						
			valve	s					
		Job Plan No.	JP-00001	J Smith - Re	evision: 01	•			
			Job Plan De	etails					
Job Plan No.		JP-00001							
JP Description		Oil Export ESD Inspection and Pa	/ General Visual artial Closure Test	SDV Genera	SDV General Visual Partial Closure Test				
Job Plan Par	t		А		Route No				
Lead Craft		OFFC-INST	In Sequence?	No	Hours (sum)	2			
CAP		Yes	Reason	Impacts p	production (outages / slowdowns)				
Condition For Work		ONLINE (Work can be performed online)							
Reason For \	Nork	PR							
Weather Dep	pendant	No	Start Month	N/A	End Month	N//	A		
SCE Override		No	Reason:	Work does not affect the function of the equipmen Performance standards not affected by this task					
Basic Care				No					
Comments									
			Task Det	aile					
Identify all kno Isolation of,	own tasks Overhaul	involved with the over of, De-isolation of	rall PMR. Ensure the ., Dismantle Scaffold	descriptions are ding for	sufficient i.e. Er	ect Scaffoldir	ng for,		
TASK	SEQ no		JP TASK DES	CRIPTION		Task Duration	Nested JP		
10	10	Carr	y out ESDV Genera	I Visual Inspection	1	1			

Baseline ILI Surveys

- Barriers include QA/QC, welding procedures etc.?
- Why do a baseline ILI survey?
- Why baseline CRA pipelines?

Gas Plant Deposits

- Deposits found in a section of manifold pipework chemical analysis showed deposits were, iron sulphide scales;
- Problem assumed to be corrosion;
- Program of NDT planned to locate and quantify areas of metal loss;
- Plan to replace sections of pipework;
- Need for more analysis in particular to identify specific forms (allotropes) of scales.

Fe[1+x]S –Mackiniwite

Most commonly found type of Iron Sulphide Low Levels of H₂S Sulphate Reducing Bacteria (SRB)

FeS₂ –Pyrite

•Mole % H_2S + low levels of Oxygen • $\frac{1}{2}O_2 + H_2S = H_2O + S$

•Fe_[1-x]S – Greigite; Pyrrotite
•Sulphate Reducing Bacteria (SRB)

- New Results showed deposits to be mainly pyrite;
- Where was oxygen coming from?
- Gas compressor seals likely source.

- Pressure Swing Adsorbers;
- Under pressure, gases tend to be attracted to solid surfaces, or "adsorbed";
- The higher the pressure, the more gas is adsorbed; when the pressure is reduced, the gas is released, or desorbed.

- Problem solved by decreasing throughput which increased Nitrogen purity;
- Shortfall made up by using higher purity (bottled) Nitrogen;
- No need for NDT programme;
- No need for pipework replacement.

- Challenge: Survival at 40 deg C;
- Spec: Suitable for minus 30 deg C;
- Is C/S (API 5L X52) necessary?
- Alternative Material; Plastic, e.g. HDPE;
- Benefits \$\$\$\$;
- Quotation: It looks like we 'dug up a time capsule from the 1970s and discovered a new pipe'.

Questions

Summary

"It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is most adaptable to change."

Charles Darwin (1809 – 1882)

