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INTRODUCTION

1. Offshore wind turbines
2. Overview of cathodic protection (CP)
3. External galvanic anode systems
4. Internal galvanic anodes – retrofit issues
5. Leaking seals - protection into narrow 

gaps



1. OFFSHORE WIND TURBINES 



FIXED OFFSHORE FOUNDATIONS
• Monopiles – circular driven pile
• Concrete gravity base substructures
• Tripod (with piles or suction caissons)
• Jacket
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FLOATING OFFSHORE FOUNDATIONS

• Early stage of 
development

• Hywind, Scotland
• WindFloat, Portugal

• Design types 
• Semi-submersible
• Tension leg
• Spar
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2. OVERVIEW OF CATHODIC 
PROTECTION (CP)



WHAT IS CATHODIC PROTECTION?
• The aim of cathodic protection is to promote the cathodic 

reaction (e.g., the oxygen reduction reaction) on the 
structure to be protected.

   Alkaline environment generated
• When the only reaction on the metal surface is the cathodic 

reaction, corrosion is suppressed, and the system is 
protected. 

• The steel to electrolyte potential is reduced to a value where 
corrosion is insignificant.

• Potential criteria are used to determine whether CP has 
been achieved (e.g. ISO 12473:2017 General principles of 
cathodic protection in seawater)
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POLARISATION FROM IMPRESSED CURRENT AND GALVANIC CP SYSTEMS 
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EFFECT OF CATHODIC PROTECTION CURRENT ON CORROSION CELLS
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ANODIC AND CATHODIC REACTIONS

• Metal dissolution (oxidation) is the primary anodic reaction
Fe → Fe2+ + 2e-

• Alternate anodic reaction
Fe2+ → Fe3+ + e-

• Oxygen reduction is the main cathodic reaction (for natural corrosion)
O2 + 2H2O + 4e- → 4OH-

• Alternate cathodic reactions
• Hydrogen reduction

2H+ + 2e- → H2
• Water reduction

2H2O + 2e- → 2OH- + H2



3. EXTERNAL PROTECTION 



EXTERNAL PROTECTION
• DNV-RP-0416:2021 Corrosion protection for 

wind turbines
• BS EN ISO 24656:2022 Cathodic protection 

of offshore wind structures
• The documents provide the latest 

recommended practice for all types of wind 
turbines:
• Atmospheric, splash, submerged and 

buried
• Internal and external

• CP required for external surfaces with an 
optional  protective coating

• Both standards address issues of historical 
poor performance.

12From DNV-RP-0416 Figure 4-1  



DESIGN CURRENT DENSITY

• Wind turbines are generally located in 
shallow waters close to the shore.
• Tendency for high levels of dissolved 

oxygen
• Tidal currents
• Structure generated flow 

amplification and turbulence
• Wave or current dominated flow

  
  INCREASED CURRENT DENSITY 

REQUIRED FOR PROTECTION

13From BS EN ISO 24656 Figure B.5  



METOCEAN DATA (1)
•  The ISO 24656 provides guidance for the use of metocean data to assess CP 

demand for design:
• Determine long-term averaged seawater flow velocities (wave and current).

• Structure generated flow amplification and turbulence localised to sides and base
•  Apply an area and time average mark-up factor of 1.5.

• Indicative CP design current densities (Initial/Mean/Final) mA/m2 for bare steel in 
seawater external (Table C.1) 
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Marked-up seawater 
flow velocity (m/s)

Temperate region
7 to 11°C

Artic region
<7°C

0.3 210/60/120 250/75/150

1.0 300/75/180 360/90/180

3.0 520/130/260 625/155/310



METOCEAN DATA (2)

• Frequently wetted zone – 
variations in tide (water) level 
and wave conditions will 
determine how much of the 
structure is immersed at any 
time and the amount of CP drain 
current.

• Still water level (SWL) plus 
significant wave height

•  FWZ50% is taken as an estimate 
of the level for mean current 
demand – estimation of anode 
mass required.
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ANODE INTERFERENCE
• Where anodes are soley fitted to the 

transition piece in close proximity (anode 
clustering), interference between anodes can 
decrease the anode outputs

• Large number of anodes and limited surface 
area available for distribution

• Lower salinity in estuary areas also increase 
anode resistance  
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INSUFFICIENT CURRENT FOR PROTECTION

Limited space on 
transition piece 
below low water

• Detailed analysis by computer 
modelling enables an anode current 
output current reduction factor.

• Application of a coating will reduce 
current demand (particularly during 
initial exposure) 



ATTENUATION
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Limited space on 
transition piece 
below low water

• Where anodes are soley fitted to the 
transition piece of larger monopiles 
(e.g., 20 to 25 m water depth) 
distribution of current to the seabed 
level and buried sections may be poor.

• Ideally anodes would be distributed 
uniformly down the foundation 
length. 

• Again, application of a coating will 
reduce current demand (particularly 
during initial exposure) and aid 
current distribution.

Monopile 
foundation



4. INTERNAL PROTECTION 



INTERNAL RETROFIT CP 
• Initial monopile internal corrosion control was 

based on stagnant seawater conditions with 
consumption of oxygen leading to low 
corrosivity.

• This was not reliable due to:
• Leaking water seals.
• Water exchange through permeable seabed.
• Headspace not sealed - internal airtight deck 

not airtight.
• Regular deck hatch opening.
• Therefore, protection required and a 

standard approach would be to install 
galvanic anodes (aluminium)  

Sheringham Shoal courtesy 
of Alan O’Neill chpv
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• Retrofitted aluminium anodes were not 
successful in some cases.

• In situations where there was negligible water 
exchange, the pH of seawater dropped:
• Around pH 8 to less than pH 4 within a few 

weeks.
• Acidification due to reaction of hydrated 

aluminium anodes with water.

• Intertek CAPCIS was appointed to carry out 
laboratory testing to investigate the issue.  

ALUMINIUM GALVANIC ANODES – 
RETROFIT

𝐴𝐴𝐴𝐴(𝐻𝐻2𝑂𝑂)6
3+ ⇌ (𝐴𝐴𝐴𝐴(𝑂𝑂𝐻𝐻)(𝐻𝐻2𝑂𝑂)5)2+ + 𝐻𝐻+          
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• To simulate aluminium anode 
dissolution aluminium chloride 
(AlCl3) was added to synthetic 
seawater and the pH recorded.

• The pH was recorded after 
stirring and when the value 
had stabilized (10 to 15 
minutes).

• For comparison the test was 
repeated using zinc chloride 
(ZnCl2).

LABORATORY TESTING



LABORATORY TEST RESULTS
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• The critical Al3+ 
concentration is approx. 
10 mg/L (gm/m³ or 
ppmv), which limits the 
reduction of pH to 
around neutral (pH 7) 
levels.

• Above 10 mg/L the pH 
drops rapidly, with pH 4 
occurring when the Al 3+ 
concentration exceeds 
100 mg/L.

• Zn2+ ion additions did 
not significantly reduce 
the pH. 



LABORATORY SIMULATIONS
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• Aim - to simulate conditions within a monopile
• Anode : cathode area ratio
• Cathode area : seawater volume
• Seawater diameter to depth ratio

• Test setup & measurements
• Al and Zn anodes used
• Steel coupon
• 14” HDPE vessels with access ports for 

oxygen and pH measurements
• Natural seawater at ambient temperature
• 2 week pre-exposure with no CP
• Potential and current monitoring
• Water sample analysis and surface analysis 

to check for calcareous scale formaiton



SIMULATION RESULTS – AL & ZN ION CONCENTRATIONS

24



SIMULATION RESULTS – PH
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SIMULATION RESULTS – CP MONITORING
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• The test design was able to reproduce the 
service conditions and allowed for 
monitoring the cathodic protection 
response and any environmental changes.

• Stable scale (calcareous deposit) has 
formed on all cathodes consisting of 
calcium carbonate, magnesium hydroxide.

• The use of aluminium anodes lead to a 
reduction in the pH to around 5 within a 
relative short time span.  A critical Al ion 
concentration of 4-8mg/L was measured.

• The use of Zn anodes did not affect the pH 
which remained fairly contact throughout 
the test period. 

CONCLUSIONS



5. LEAKING SEALS - 
PROTECTION INTO NARROW 
GAPS 



• Power cable routed through 
the MP wall close to the 
seabed

• Cable protection system 
(seal)

• If seal fails a narrow gap is 
created

• Dimensions variable:
• Length
• Width
• Depth

BACKGROUND
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• MP external surface 
protected by CP:
• Corrosion

• Fatigue

• If seal fails CP also 
applied internally

• Will CP penetrate 
into the narrow gap 
to protect the 
surfaces in the 
restricted area?

• Review of published 
information

• Previous studies:
• Under disbonded coatings - 

pipeline field joints

• Stagnant conditions – no 
oxygen replenishment 
therefore reduction in 
cathodic current density

• Cathodic reaction produces 
alkaline conditions (OH-) 

• Calculations – one 
dimension model

BACKGROUND
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Inputs:
• Gap dimensions
• Potential & current 

density

• Tafel slope
• Electrolyte conductivity



SIMULATION DETAILS
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• Aim to replicate real life gap
• Dimensions:

• Length 110 mm
• 1, 3 and 7 mm width

• Natural seawater
• Flowrate – up to ~4 m/s using raised 

header tank
• Control CP at mouth/end with 

potentiostat and anode
• Measure potential and current density 

with reference electrodes and coupons



TEST PROGRAMME
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Short term test –  
stagnant conditions to 
represent ‘slack water’ 
(at high and low tide 
points)



TEST RESULTS - STAGNANT
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TEST RESULTS - FLOWING
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STAGNANT & FLOWING CONDITIONS – 3 MM GAP

36As flow increases the potential becomes more positive – less protection

External CP     Both external and
           internal CP



CONCLUSIONS

• In stagnant conditions protection could be achieved in all cases except 1 mm gap 
and external anode only.

• Protection was less likely to be achieved in flowing environments.
• In flowing environments protection criteria could only be met if CP was applied both 

internally and externally.
• The potential became more positive (less protection) with higher flow and narrower 

gaps.
• In all cases the test commenced with a short stagnant phase which will have had an 

influence on the calcareous deposit formation and assisted the penetration of CP.
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SUMMARY

• In past years the application of cathodic protection to offshore wind turbine 
monopiles was not always successful.

• Externally, the typical design did not always provide sufficient current and the 
revised standards provide additional requirements to ensure a more robust design.  

• Internally, where corrosion control strategies failed primarily due to leaks, use of 
aluminium anodes was found to cause seawater acidification and high corrosion 
rates.   

• Intertek CAPCIS carried out laboratory tests and simulations to investigate 
conditions where acidification might occur.

• In cases of low seawater exchange only zinc anodes should be installed internally.
• Where seals are leaking, the steel in the narrow gap is likely to be protected if 

cathodic protection is applied both internally and externally. 
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Thank you for your attention

Any questions?
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