

Selection of cathodic protection systems for reinforced concrete structures

Rene Brueckner 19 September 2024

19 September 2024

Who We Are and What We Do

1

Bristol, Manchester, Croydon

Corrosion specialists, Cement / concrete technologists, metallurgists, asphalt, heritage mortar and coatings experts 2 Anything Materials related Cement, Concrete, Corrosion, Mortar, Asphalt etc

3

Condition Assessments Residual Life Assessments -Forensic Engineering

5 Durability Assessments **6** Asset Management

Durability &

Cathodic

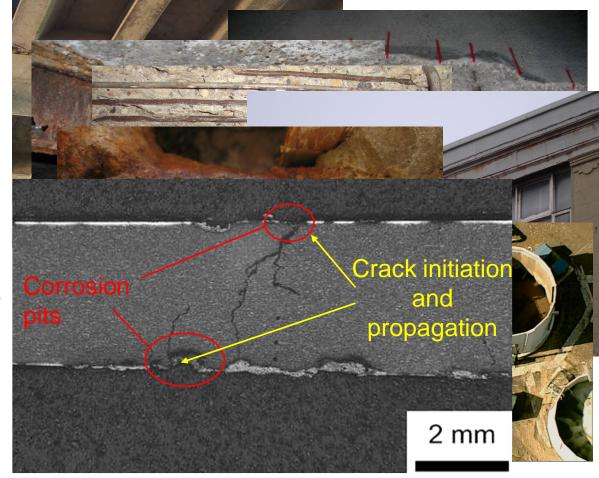
Protection

Repair Design

8 Technical Advice / Troubleshooting

9 Expert Witness

Mott MacDonald


3

Projects

- Bridges
- Multi-storey car parks
- Tunnels
- Steel framed buildings
- PT tanks / structural elements

REINFORCED CONCRETE

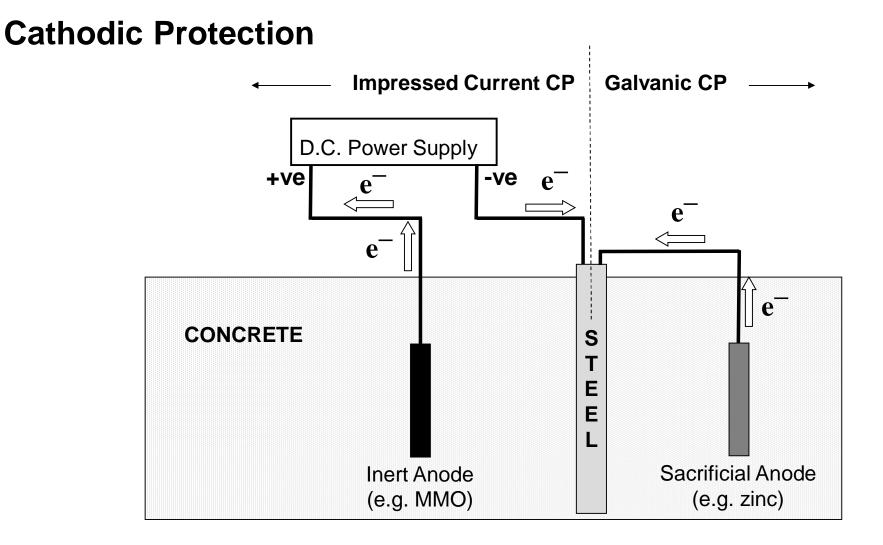
- Cathodic protection works
- Site investigations and condition assessments
- Cathodic protection design
- Support to contractors during installation
- Commissioning
- Monitoring

Silver Jubilee Bridge (Runcorn – Widnes)

How does steel in concrete corrode

- Steel embedded in concrete normally does not corrode
- Protective passive oxide film on reinforcement
- Carbonation / chloride ingress
- Corrosion is initiated in presence of moisture
- Reaction products are bigger and concrete spalls and delaminates
- Section loss of reinforcement

Corrosion Management Strategies


- Electro-chemical techniques
- Cathodic protection / prevention
- Electro-osmosis
- Realkalisation
- Chloride extraction
- Corrosion inhibitors
- Physical solutions
- Surface protection systems (barriers)

Cathodic Protection

- CP polarises the reinforcement in an electrical circuit making all the steel to be protected cathodic with respect to a system of installed anodes
- CP can stop corrosion in any environment
- Continuous penetration of chlorides can be tolerated / contaminated concrete remains
- Impressed, galvanic and hybrid systems

Concrete Repair Basis

- Ageing of UK infrastructure as structures are generally 40-70 years old
- Highways England specifies a service life of 120 years
- Regular exposure to de-icing salts
- Expected residual service life / life extension is currently 50-80 years

Option Selection

- Typically, a CP system is pre-selected based on an engineer's experience and preference.
- Design needs to consider:
- Aggressiveness of environment,
- Area to be protected,
- Area of steel,
- Type of anode,
- Sensitivity of the concrete to other deterioration mechanisms (ASR, SCC).

Option Selection

- Structures Option Management Report (SMOR) in accordance with CS 462 if there is more than one BS EN 1504-9 option for repairing or managing a structure.
- The SMOR should consider:
- Various repair / CP systems
- Associated health & safety risks
- Estimated whole life costs
- Impact of repair on the road/rail/etc network
- Future management strategy
- Environmental aspects
- Sustainability

Option Selection

• A scoring system to assess the different options was developed for TfW and includes the following:

•	Technical applicability:	20%
•	Environmental impact (exposure / working time on site)	10%
•	Sustainability (embodied carbon, traffic delays/restrictions)	30%
•	Health & Safety and Welfare (traffic management, activities)	20%
•	Whole life cost (CAPEX, whole-life cost, user-delay):	20%
		<u>100%</u>

There is a desire to significantly increase the weighting of sustainability, HSW and environment -60% vs 40% for technical and whole-life cost.

Basic Parameters

CP System	GCP	НСР	ICCP	
Design Life:	Design Life:			
Anode system	15-20 years	25-30 years	75+ years	
Electrical equipment	-	-	25 years	
Estimated Cost / Unit:				
Design and installation	£300/m ²	£400-£555/m ²	£480-540/m ²	
Anode removal	£150/m ²	£150/m ²	-	
Electrical equipment and replacement/installation	-	-	£3,500-£6,000 EA plus TM (System stabilise – simpler supply)	
Monitoring	Required annually but often undertaken as part of General (every 2 years) and Principal Inspections (every 6 years)	Required annually but often undertaken as part of General (every 2 years) and Principal Inspections (every 6 years); Initial first year monitoring: £3,000- £6,000; Annual monitoring: £1,000- £5,000/year	Required annually; Initial first year monitoring: £3,000- £6,000; Annual monitoring: £1,500- £5,000/year	
Operation and Maintenance	Replacement of whole system, i.e. anodes / monitoring equipment at 15-20 year intervals	Replacement of whole system, i.e. anodes / monitoring equipment at 25+ year intervals	Replacement of electrical power supply and monitoring systems at 25+ year intervals; Potentially remote monitoring	
			equipment: £500 to £1000 [CPA (2019)]; Electricity costs: approx. £30/year	

Practical Considerations

CP System	GCP	НСР	ICCP
Network disruptions / installation time	Initial: Lowest disruptions; Maintenance: Reoccurrence; Overall: Highest network disruption during whole-life cycle of a structure.	Initial: Medium; Maintenance: Reoccurrence; Overall: Medium network disruption.	Initial: Highest; Maintenance: Minimal. Replacement of power supply and monitoring systems; Overall: Least network disruption.
Practical Considerations	Larger diameter drill holes; The reinstatement with new anodes at the end of the design life may not be a practical option;	Additional drill holes are often required due to shorts; Drill holes larger diameter than for ICCP; The reinstatement of existing with new anodes may not be a practical option; Full encasement of anodes is required but difficult to verify in practice. A systematic decrease in performance may occur where voids are present.	Short-circuits between anode and reinforcement causes faults; The system requires power and needs to be switched on to work; Protection of control unit against the risk of vandalism, damage from flooding and accessibility for monitoring: SIM cards used for remote monitoring require regular replacement, i.e. every 2 years; More complex wiring may create faults.

Advantages and Disadvantages

CP System	GCP	НСР	
Design Life: Anode system	15-20 years	25-30 years	75+ years
Electrical equipment	-	-	25 years
Robustness and Performance	 Fairly robust within the limits of the system's service life; Performance will be affected if chloride content and moisture in concrete increases. 	Long-term field data are limited to maximum 20 years; The system is fairly robust; There is limited comprehensive field data to validate the passivation ability of hybrid anodes.	Highly robust but system needs to be on and monitored regularly. The performance can be monitored and adjusted ;
Main advantages	No AC connection required; No maintenance required for life extensions within the system's design life;	No AC connection required; No maintenance required for life extensions within the system's design life;	High robustness of system. Electrical equipment that fails can be easily replaced; High levels of control; Ongoing Cl contamination can be
Main disadvantages	Replacement of whole system may be required; Consumption of zinc in anodes may vary during expected design life; Not controllable;	Replacement of whole system may be required; Consumption of zinc in anodes may vary during expected design life; Limited comprehensive track record of field applications; Not controllable;	 better tolerated than HCP. AC connection required; Replacement of power supply and monitoring equipment; Mesh and overlay: additional dead load; Mesh and overlay: Change in aesthetic appearance.

Health & Safety

CP System	GCP	НСР	ICCP
Health and Safety	Hand-arm vibration syndrome (HAVS) – significant number of drill holes can be required; Anodes are generally larger than discrete ICCP anodes resulting in longer drilling times, i.e. increased risk of HAVS; Working with cementitious materials (COSHH).	Hand-arm vibration syndrome (HAVS) – significant number of drill holes can be required; Anodes are generally larger than discrete ICCP anodes resulting in longer drilling times, i.e. increased risk of HAVS; Working with cementitious materials (COSHH).	 Depending on ICCP system: Mesh and overlay / surface applied systems: HAVS from mesh fixings and reference electrodes; Discrete anode system: HAVS similar to hybrid but smaller diameter holes, so typically less drilling; Electrical shock – working AC power; Sharp edges from mesh; Manual handling; Working with cementitious material (COSHH).

What specific system should be used?

- Galvanic CP around 200 years track record
 - Discrete vs Surface applied (ZLA): HSW and installation time
- Hybrid CP 10-20 years
 - Discrete: HSW
- ICCP around 40 years track record
 - Mesh & overlay: dead load, vibration risk, reduced head room
 - Discrete: limited element thickness, cover, short circuits
 - Cassette system: vulnerable to theft or damage
 - Conductive coating: localised conditions govern current discharge, debonding

Example – Abutment Life Extension of 75 years

	GCP	НСР	ICCP	
System Replacement	3х	2x		1x
Cost	3x £300/m ²	2x £400-£555/m ²		1x £480-540/m ²
Duration (anode installation)	3x 14 weeks	2x 20 weeks	Mesh & Overlay (Discrete)	1x 12 weeks (1x 22 weeks)
Duration (set up, clearance, scaffolding, demobilisation)	3x 13 weeks	2x 13 weeks		1x 13 weeks
Electrical equipment				2 days EA
CO ₂ e (Materials)	2.4-5.4 kgCO ₂ e/m ²	1.6-3.6 kgCO ₂ e/m ²		8 kgCO ₂ e/m ² (3 kgCO ₂ e/m ²) +0.1 kgCO ₂ e/annum
Total disruptions CO₂e TM H&S Environmental	81 weeks	66 weeks		26 (36) weeks

Conclusions

- Selection of most suitable CP system depends on various factors
- The system with the lowest whole-life cost may not be the most sustainable and environmentally friendly solution
- Authorities are willing to invest more to achieve sustainability goals, reduce impact on the local economy and society
- ICCP systems are the most robust with the longest design life and potentially shortest disruptions
- GCP are more applicable for one-time short-term repairs
- HCP systems for medium-term repairs

Thank you