

Spontaneous inhibition phenomena of corrosion in CCUS system and their mechanisms

Prof. Yong Xiang

China University of Petroleum, Beijing

Report Outline

01	02	03	04
Research	Research	Results and Discussion	Conclusions
Group	Background		and Prospects

1. Research Group Laboratory

- Laboratory for Low Carbon Energy Equipment and Materials Protection dedicated to equipment material failure and protection in the field of low carbon energy production and utilization.
- Our researches aim at improving the safety and economics of low-carbon energy equipment and process.
- Our lab is mainly involved in the areas of Carbon Capture Utilization and Storage (CCUS), Enhanced Oil Recovery, Gas Turbines, and Hydrogen Utilization.

CO₂ capture device in CCUS

Hydrogen enriched natural gas transportation

Downhole tubing corrosion failure

1. Research Group Team Members

We have three professors, three associate professors and one lecturer.

Yong Xiang

Professor/Doctoral Supervisor CCUS, Material Protection

Wei Yan

Researcher/Doctoral Supervisor Wellbore Integrity

Jiangyun Wang

Researcher/Doctoral Supervisor Multiphase flow and erosive corrosion

Erdong Yao

Associate Researcher Oilfield Chemistry and Applications

Zitao Jiang

Associate Professor Cathodic Protection NACE CP4

Yanfang Fan

Associate Professor/Master Supervisor CO_2 capture technologies

Zehui Zhao

Lecturer/Doctor Biomimetic Nano-coating Materials

Yong Xiang China University of Petroleum, Beijing

- Ocean Engineering Research Institute, Vice President
- College of Mechanical and Transportation Engineering, Professor/Doctoral Supervisor
- Ohio University, Institute of Corrosion and Multiphase Flow Technology, Postdoctoral Fellow, Co-Supervisor: Srdjan Nesic.
- **Tsinghua University**, Power Engineering and Engineering Thermophysics, Ph.D.
- **Tsinghua University**, Thermal and Power Engineering, B.S.

Yong Xiang is mainly engaged in the research of carbon capture and sequestration technology, corrosion and protection of oil and gas equipment, and high temperature failure of power plant equipment materials. He is in charge of the surface/youth projects of National Natural Science Foundation of China, the surface project of Beijing Natural Science Foundation, the project of Open Fund for State Key Laboratory, and a number of enterprise projects, and participates in the sub-projects of the National Key Research and Development Program of China. He has published more than 50 academic papers, including more than 30 SCI papers and more than 500 citations.

1. Research Group Experimental Equipment

Glass Reactor

High Temperature Thermal Cycling Test Furnace

High temperature tube furnace

Sterilizer

Constant temperature mold incubator

1. Research Group Supercritical CO₂ Corrosion Prediction Software

- Currently, SuperCCorp software has been applied to thirteen units in Changqing, Daqing, Jilin, Zhongyuan and Yanchang oilfields.
- The appraisal opinion of the Chinese Society of Corrosion and Protection (Prof. Xiaogang Li, Chairman of the Board of Directors, and Prof. Yu Zuo, an expert in materials protection, were members of the appraisal committee)
- The team established a mechanistic supercritical CO₂ corrosion rate prediction model, which has reached the international leading level.
- The team's scientific achievements have created an overall economic benefit of 32.357 million RMB.
- In this field, we successfully applied for one national and one Beijing Municipal surface funding and successfully published several academic papers

Evaluation Opinions

Application Proof

戚	果	名	称	含杂超临界 CO2 腐蚀预测软件 SuperCCorpV3.0
应	用	单	位	中国石化中原油田分公司石油工程技术研究院
应用	成果	起止日	时间	2024年1月——2024年4月
单位	2.地力	上与日	日编	河南省濮阳市中原路 408 号, 457001
IR I	后人	Jij ti	诸	萨永新 13839328128

针对 CO₂封存井筒区域出现的含杂超临界 CO2 廣遠问題以及井筒区域的稳 2性问题,中国石油大学(北京)向勇团队开发了相关腐蚀和井筒区域稳定性 预制软件,在现场获得应用,井显示出较高的预测精度。

CO:建存系经是一个多参原属合创富木相体系。在这个体系中座管、未採环 和近计表写历处的情况。在学与术派环的失效会对 CO:对在并持 天整性追求[重影响,這一步影响 CO:对在的支发性。因此,对着管以及术说 环的命心进行预测于及时预测可能的失效规定现至实重要。或团队在自己早期 开发的输出间题中认识时的失效规定现至实重要。或团队在自己早期 开发的输出间题中认识时的失效规定现至大中的这个人和优势和模型。本记环看命说 质确合富木相腐蚀预测模型。该模型引入了超缩界相高下 CO:面都度模型、电 C学常能模型。就做计能和现在分子参加度、CO:分丘的影响、还同时考虑了 级及起方会量模型等。该模型形成了考虑超度、CO:分丘的影响、还同时考虑了 服役周期下的瞬时腐蚀追求中以及术证环和管管的寿命,计算结果与现场实际情 及基本等命。该团队使用 Pythen 语言对试镜道进行了代码实现,并开发出了直 及基册的软件字面。该软件具有国际管性、接合分为superCCom-

该成果于 2024年1月至今在现场进行了应用。该成果对于 CO,封存并选材 设计、保障近并简区域完整性以防止 CO, 邮编具有重要意义、社会和经济效益 显著。该成果将为国内外 CO,封存并的安全性提供有力保障,应用趋势广阔。

1. Research Group Science and Technology Awards

- Won the second prize of Shaanxi Provincial Scientific and Technological Progress in 2023.
- Accumulated 6 provincial and ministerial level awards.

中国石油和化学

b) a)) a)) a)) a)

证书编号: 2018T002

1. Research Group More Than 30 SCI Articles and 500 Citations

- 1. Chen Li, <u>Yong Xiang^{#*}</u>, Rongteng Wang, Jun Yuan, Yuhao Xu, Wenguan Li, Zhanguang Zheng. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO₂-saturated aqueous environment, *Corrosion Science*, 211 (2023) 110899.
- 2. Kai Yan, Yong Xiang^{#*}, Haiyuan Yu, Zhenrui Li, Yajing Wu, Jian Sun. Effect of irregular microcracks on the hot corrosion behavior and thermal shock resistance of YSZ thermal barrier coatings. *Surface and Coatings Technology* 431 (2022) 128038.
- 3. Kai Yan, Haiyuan Yu, Yong Xiang^{*}, Yuwei Guo, Yajing Wu, Zhenrui Li, Jian Sun, Zhanqing Li. Oxidation and interfacial cracking behaviors of TBCs with double-layered bond coat on different substrate materials. *Corrosion Science* 209 (2022) 110770.
- 4. Qingjun Gong, <u>Yong Xiang^{#*}</u>, Jianquan Zhang, Rongteng Wang, Dahui Qin. Influence of elemental sulfur on the corrosion mechanism of X80 steel in supercritical CO₂-saturated aqueous phase environment. *The Journal of Supercritical Fluids* 176 (2021) 105320.
- 5. <u>Yong Xiang</u>, Weiman Xie, Shiyi Ni, Xihan He. Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO₂ capture process: Effect of NO₃⁻. *Corrosion Science* 167 (2020) 108521.
- 6. <u>Yong Xiang</u>, Chicheng Song, Chen Li, Erdong Yao, Wei Yan. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities. *Process Safety and Environmental Protection* 140 (2020) 124-136.
- Yong Xiang, Zhengwei Long, Chen Li, Wei Yan. Neutralization and adsorption effects of various alkanolamines on the corrosion behavior of N80 steel in supercritical CO₂ with impurities. *Corrosion* 75 (2019) 999-1011.
- Chen Li, <u>Yong Xiang^{#*}</u>, Wenguan Li. Initial corrosion mechanism for API 5L X80 steel in CO₂/SO₂-saturated aqueous solution within a CCUS system: Inhibition effect of SO₂ impurity. *Electrochimica Acta* 321 (2019) 134663.
- Chen Li, <u>Yong Xiang</u>*, Chicheng Song, Zhongli Ji. Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO₂-H₂O binary systems with flue gas and NaCl impurities relevant to CCUS technology. *Journal of Supercritical Fluids* 146 (2019) 107-119.
- 10. Yong Xiang. Corrosion issues of carbon capture, utilization, and storage. *Materials Performance* 57 (2018) 32-35.
- 11. <u>Yong Xiang</u>, Chen Li, Wuermanbieke Hesitao, Zhengwei Long, Wei Yan. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO₂ environment. *Journal of Supercritical Fluids* 138 (2018) 132-142.
- 12. <u>Yong Xiang</u>, Yu Yuan, Pei Zhou et.al . Metal Corrosion in Carbon Capture, Utilization, and Storage: Progress and Challenges. **Engineering Sciences**, 2023, 25(3): 1-12. (In Chinese)

Report Outline

01	02	03	04
Research	Research	Results and Discussion	Conclusions and
Group	Background		Prospects

2. Research Background CCUS Background

China CO₂ pipeline facility

CCUS Process (Zhou, et al. Energy 310 (2024) 133225)

- By 2050, more than 85% of China's fossil energy power generations will use CCUS owing to the carbon peaking and carbon neutrality goals (Dual Carbon Goals). There will be thousands of million-ton CCUS projects.
- CCUS technology currently faces two major challenges: high energy consumption for capture and uncertainty of storage safety.

2. Research Background CCUS Corrosion Characteristics

CCUS corrosion characteristics:

- Wide range of equipment and materials
- Highly corrosive media
- Multiple phase environments
- Variety of carbon source impurities
- Complex cathode and anode reaction mechanisms
- Complex and variable composition of product films
- Lack of corrosion protection experience

(Wei et al. Corrosion Review 2015 33(3-4): 151-174)

Impurity gas content of CO ₂ captured by technologies (Oosterkamp and Ramse n, POLYTEC, 2008)									
	Component	Oxyfuel combustion capture	pre-combustion capture	e post-combustion capture					
	CO ₂	>90 v%	>95.6 v%	>99 v%					
	C2+		<0.01 v%	<100 ppmv					
	N ₂	<7 v%	<0.6 v%	<0.17 v%					
	CH_4		<350 ppmv	<100 ppmv					
	CO	Trace	<0.4 v%	<10 ppmv					
	H_2S	Trace	<3.4 v%	Trace					
S	NO _x	<0.25 v%		<50 ppmv					
S	SOx	<2.5 v%		<10 ppmv					
-	O ₂	<3 v%	Trace	<0.01 v%					
	H ₂	Trace	<3 v%	Trace					
	Ar	<5 v%	0.05 v%	Trace					
_		Supercritical con	ditions for several subst	ances					
	Solvent	Critical T (K) C	ritical P (MPa)	Critical density (g/cm ⁻³)					
	CO ₂	304.3	7.4	0.486					
	NH ₃	405.5	11.2	3.0~ 8.0					
	H ₂ O	667	22.1	0.322					
	SO ₂	157.5	7.9	0.525					
	HCF ₃	299.3	4.8	0.525					
	CH ₃ CN	547.7	4.8	0.237					

12

Comparison of Advantages Disadvantages and Cost of Different CO₂ Capture Technologies

(Xiang et.al. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 1-17. In Chinese)

Capture Technology	Advantages	Disadvantages	Application Areas	Capture Cost
Chemical Absorption	Mature technology, simple process modifications	High energy consumption, severe corrosion, loss of absorbent, high operational cost	CO ₂ compression, such as in flue gas from power plants	Amine absorption: 150-400 RMB/ton
Physical Absorption	High absorption capacity, low energy consumption, non-corrosive equipment	CO ₂ removal efficiency not high	CO ₂ compression, such as in coal chemical industry, ammonia production	Low-temperature methanol wash: 100 RMB/ton
Adsorption Separation	Simple process, low energy consumption, high product purity	Frequent adsorbent regeneration, automation challenges, requires large adsorbent quantities	Suitable for industrial gases with CO ₂ concentrations of 20-80%, such as in ammonia synthesis gas	200-400 RMB/ton
Membrane Separation	Low energy consumption, small equipment size, easy operation and maintenance	Membrane material prone to contamination, difficult to clean, high requirements for temperature and corrosion resistance	Mainly used in natural gas treatment	500 RMB/ton (Guangdong Huayin Fenghai)
Low- temperature Distillation	Produces high purity, liquid CO ₂	Equipment is bulky, high energy consumption, separation efficiency varies	Suitable for high-concentration CO ₂ recovery, such as in oil fields	284 RMB/ton
Pre- combustion Capture	High pollutant removal efficiency, low oxygen content	High operational cost, long construction period, low system reliability	IGCC (Integrated Gasification Combined Cycle)	239 RMB/ton
Oxy-fuel Combustion Capture	Low flue gas loss, high boiler efficiency, can retrofit existing boiler units	Energy loss due to oxygen and CO ₂ compression, affects power plant efficiency	Currently in pilot testing	780-900 RMB/ton
Chemical Looping Combustion	High fuel conversion efficiency, low by- product generation of nitrogen compounds	Technology still in research, lacks experience in large-scale operation	Currently in chemical looping combustion reactor testing phase	1
Hydrate Separation	Simple equipment, easy operation, low capital investment	Technology still in research, lacks experience in large-scale operation	Applied in low-concentration CO ₂ separation, potential for natural gas dehydration	1

2. Research Background Amine Capture System

- Organic amine capture technology is the most mature CO₂ capture technology;
- Widely used in the field of natural gas purification. Also used in postcombustion capture of coal-fired power plants;
- Organic amines will suffer thermal, chemical & oxidative degradation.
 They will volatilize into the CO₂ stream.

Organic amine CO₂ capture system

(Krzemien, et al. Journal of Loss Prevention in the Process Industries 43 (2016) 189-197)

Costs of composite organic amines for capturing flue gas from a coal-fired boiler with a CO₂ concentration of 10% (Shasha Wang, Cost analysis of existing CO₂ capture technologies, 2023, (02): 62-64. In Chinese)

			Utility Unit Price (RMB)	Consum	Operatin g Cost		
No.	Name	Unit		Pre- treatment	Absorption/ Desorption	Compression and Liquefaction	(RMB per ton of product)
1	Electricity	kW∙h	0.5	50	36	130	108
2	Circulating Cooling Water	m ³	0.3	30	120	20	51
3	3-bar Steam	t	130	0	1.3	0	169
	Total						328

 Among the carbon sources of CO₂ emissions, they can be categorized into high concentration carbon sources (above 80%); medium concentration carbon sources (20% and 80%); and low concentration carbon sources (below 20%). High- and medium-concentration carbon sources, such as ammonia decarbonization gas and coal hydrogen tail gas, account for only a small portion; the vast majority are low-concentration carbon sources, mainly flue gas.

2. Research Background Corrosion of Capture System

- The CO₂ capture process causes severe corrosion from acid gases and chloride ions. Protection measures includes the use of corrosion-resistant alloys, inhibitors and coatings.
- NACE statistics show that 98% of amine stress corrosion cracking (ASCCs) are related to improper post-weld

heat treatment.

Corrosion monitoring at the Technology Center Mongstad (TCM). **Results of corrosion of various materials during CO**₂ **absorption in aqueous MEA** (Flø, et al , International Journal of Greenhouse Gas Control 84 (2019) 91–110.)

materials	level	Type of test	
Stainless steel (with weld)	316 L SS	Uniform and pitting corrosion	
Stainless steels	316 L SS	stress corrosion cracking	
Duplex steel	22Cr Duplex Stainless Steel	stress corrosion cracking	
Super duplex steel	25Cr Duplex Stainless Steel	Uniform and pitting corrosion	
Carbon steel	235 CS	Uniform corrosion	
HNBR	—	degradation	
EPDM-AL	—	degradation	
EPDM-XH	_	degradation	

Pitting corrosion of 30408
stainless steel in a domestic
organic amine capture systemCorrosion cracking of impeller of poor
amine solution transfer pump in CO2
capture system

2. Research Background Transportation System

Based on the failure causes of 29 reported accidents that occurred in U.S CO₂ pipeline from 1986 to 2008, it can be seen that corrosion is the main causative factor for CO₂ pipeline accidents (45%).

issues related to large-scale capture, transport and storage of CO₂ (Det Norsk Veritas, Horvik. Norway)', 2008.)

Effect of impurities on the density of CO₂ mixtures (Wang, et al. Energy Procedia 4 (2011) 3071-3078)

Pressure, bar

2. Research Background Transportation System

Supercritical CO₂ may be converted to liquid CO₂ during pipeline transportation, collectively referred to as dense-phase CO₂. Corrosion of dense-phase CO₂ during transportation is affected by a variety of factors.

2. Research Background Corrosion Protection for Transportation System

 A thermodynamic model of the upper limit of the moisture content of pipeline CO₂ under extreme conditions was developed, and the prediction results were in good agreement with the results of European DYNAMIS project.

Corrosion Protection Measures in CO₂ Transportation Pipelines

- Moisture content has a huge impact on the corrosion process, and dehydration can effectively reduce the corrosion rate.
- Use of stainless steel for piping reduces the corrosion rate of the pipeline.

2. Research Background Storage System

In 1986, massive natural CO₂ erupted from the bottom of Lake Nyos in Cameroon, which spread to the surrounding low-lying areas in a short period of time, resulting in a serious accident in which around 1,700 people died.

Lake Nyos Volcanic System

(Jacques, et al. Was the lethal eruption of Lake Nyos related to a double CO_2/H_2O density inversion. 342(2010) 19–26)

ADM's first major underground carbon sequestration facility in Illinois in the United States has experienced two leaks from a **corroded monitoring well** in March and July 2024. To date approximately **8,000 tons of liquid** CO_2 and other fluids have flowed into uncontrolled areas. It is the **world's first CO₂ leakage** of CCS or CCUS projects!

Illinois basin

2. Research Background Storage System

- The CO₂-EOR process and storage system may contain corrosive gases such as O₂, SO_x, NO_x, H₂S, which can cause more serious damage to the pipe column such as perforation and fracture.
- The main types of corrosion: pitting, stress corrosion, microbial corrosion, galvanic corrosion and crevice corrosion, etc.
- Producing wells under high mineralization conditions have serious scaling problems inducing under-deposit corrosion.

2. Research Background Storage System

• Long-term, safe CO₂ sequestration is the goal of CCUS, so maintaining well integrity throughout the entire life of the project (1000 year?) is a key issue in ensuring the safety of CCUS.

• Failure of wellbore area integrity due to corrosion and degradation of materials under long-cycle containment and CO₂ leakage from the wellbore area are issues of concern.

(Carroll, et al. Int. J. Greenh. Gas Con. 49 (2016) 149-160)

Report Outline

01	02	03	04
Research	Research	Results and	Conclusions
Group	Background	Discussion	and Prospects

3. Results and Discussion Experimental Setup

- The atmospheric pressure test is carried out in a glass cell; the high pressure test is carried out in an autoclave.
- The corrosion rate, morphology, and product film of the samples were analyzed using weight-loss method, SEM, XPS, XRD, and 3D morphology. High-pressure tests were conducted for high-pressure electrochemical measurements.

Welded joint electrode

Experimental setup diagram: (1. N₂; 2. high purity CO₂; 3. CO₂/SO₂; 4. reaction device; 5. thermocouple; 6. electrochemical workstation; 7. tail gas device; 8. computer) High-temperature and high-pressure autoclave

> Organic amine degradation and corrosion mechanism

The addition of O₂ and heat stabilized salt (HSS) to the monoethanolamine (MEA) -containing solution revealed that the anodic reaction process had the activation and passivation regions, while the cathode reaction was enhanced.
 When oxygen and flow were both present, the corrosion rate did not decrease over time, the flow increased the mass transfer process and accelerated corrosion.

> Organic amine degradation and corrosion mechanism

Low corrosion rate of A106 steel after 120 h of MEA degradation(a) fresh solution, 24 h, (b) fresh solution, 72 h, (c) fresh solution, 120 h, (d) dirty solution, 120 h (exposed from 120 to 240 h)

- The corrosion rate of specimens in dirty solution was found to be significantly lower than that in the fresh solution by weight-loss method.
- Obvious corrosion happened on the surface of the specimen in the fresh solution, while grinding marks were
 observed on the smooth surface of the specimen in the dirty solution.

> Organic amine degradation and corrosion mechanism

Nyquist plots of A106 steel in CO_2 - O_2 -MEA solution at 50 °C: (a) with different concentrations of NaNO₃ in fresh solution after 120 h; (b) in fresh solution with 1000 ppmw NaNO₃ and different time durations; (c) in fresh and dirty solutions after 120 h with 11,000 ppmw NaNO₃; (d) equivalent circuit of fresh solution; (e) equivalent circuit of dirty solution.

- The EIS results are in agreement with the weight loss method, and it was found that the diameter of the capacitive arc of the specimen in the dirty solution was significantly larger than that of the fresh solution, the resistance was greater and the corrosion rate was lower.
- The corrosion rate of A106 steel in 11000 ppmw NaNO₃-CO₂-O₂-MEA solution was lower than that of the blank group and 1000 ppmw NaNO₃ group.

> Organic amine degradation and corrosion mechanism

(COLOMBAN P, et al. New trends and developments in automotive system engineering: In Tech. 2011: 565-584.) (STUPNISEK-LISAC E, et al. Corrosion, 1995, 51(10): 767-772.)

> Organic amine degradation and corrosion mechanism

AEEA solution passed through 50 ppm SO₂ at different times in fresh solution

Nyquist plots of 30408 stainless steel in a 30 wt% AEEA solution with $12\% CO_2 + 6\% O_2 + 50 ppm SO_2$ passed through it for different times in fresh solution.

Stainless steel corrosion rate in organic amine AEEA degradation product solution less than fresh solution

Degradation products of the

Time	R _s (Ω*cm²)	R _{ct} (Ω*cm²)	Υ (Ω ⁻¹ *s ⁿ)	п	equivalent circuit
24 h	184.98	30824	1.2016E-4	0.80755	CPE ₁
72 h	87.375	351170	1.7709E-4	0.77199	
120 h	63.295	1728300	1.9268E-4	0.77734	
Z120 h	26.318	170980	2.0848E-4	0.79976	

Equivalent circuit of EIS spectrum in 12% CO_2 +6% O_2 +50 ppm SO₂ environment and fitting parameter table

CO₂-SO₂ coupling system corrosion mechanism

Differences in corrosion rates in atmospheric/supercritical CO₂ systems containing different concentrations of SO₂

Schematic diagram of corrosion mechanism of X80 steel in CO₂/SO₂ system

Impedance spectra and fitting circuits for X80 steel at the initial stage of corrosion in the CO₂/SO₂ system

• There is a significant difference in the effect of SO₂ impurities on corrosion in atmospheric CO₂ and supercritical CO₂ environments. SO₂ inhibits corrosion during the initial stages of corrosion in atmospheric CO₂ system.

A DE TRANSPORTATION OF THE DESTINATION OF THE DESTI

CO₂-SO₂ coupling system corrosion mechanism (welded joint steel)

> CO₂-SO₂ coupling system corrosion mechanism (welded joint steel)

Nyquist curve for X65 welded joints in CO_2/SO_2 saturated aqueous solution: (a) CO_2 24 h; (b) CO_2 72 h; (c) CO_2 +100 ppm SO_2 24 h; (d) CO_2 +100 ppm SO_2 72 h at 35°C, atmospheric pressure.

- In CO₂ solution, the impedance spectrum showed capacitive characteristics related to the charge transfer process, while the low-frequency range exhibited inductive characteristics associated with the adsorption of the Fe(OH)+^[1].
- In CO₂ aqueous system containing SO₂ for 72 h, it was observed that in BM, HAZ, and WM showed different corrosion conditions, with the BM specimen showing the largest diameter of the capacitive resistance arc.

([1] Moradighadi, et al. Electrochim. Acta 400 (2021) 139460)

$> CO_2$ -SO₂ coupling system corrosion mechanism (welded joint steel)

XPS of X65 welded joints in CO_2/SO_2 saturated aqueous solution for 72 h: WM (CO_2): (a, b, c); WM (CO_2 +100 ppm SO_2): (d, e, f); BM (CO_2 +100 ppm SO_2): (g, h, i) (35°C, atmospheric pressure)

- WM analysis through XPS revealed that no sulfur-containing compounds were formed, regardless of the presence or absence of SO₂. The main reaction products detected were FeCO₃ and Fe₃C (cementite).
- In the presence of SO₂, SO₃²⁻ and FeS were detected. Therefore, we infer that the hydrolysis products of SO₂ are adsorbed on the substrate surface during the reaction, forming FeS and inhibiting the corrosion of the BM.

 $SO_2 \rightarrow SO_3^- \rightarrow S_2O_4^- \rightarrow S_4O_6^- \rightarrow S_2O_3^- \rightarrow S \rightarrow S_5^- \rightarrow S_4^- \rightarrow S_3^- \rightarrow S_2^- \rightarrow S_2^-$

(Hemmingsen, et al. Corrosion 48 (1992) 475-481)

CO₂-SO₂ coupling system corrosion mechanism (welded joint steel)

Corrosion mechanism of X65 welded joints in CO₂/SO₂ saturated aqueous phase solution: (a): CO₂; (b): CO₂+SO₂

- In CO₂ solution, the metal substrate always maintains a high corrosion rate owing to Cl⁻ and Fe₃C will destroy the integrity of the FeCO₃ product film, and the WM corrosion rate is always the highest.
- In the presence of SO₂, the hydrolysis products of SO₂ will be preferentially and selectively adsorbed on the surface of BM and form the FeS product film (why?), which prevents the further corrosion.

Coating protection technology Organic polymerbased coatings Metal Alloy Coatings Metal Alloy Coatings Metal Alloy Coatings Corrosion products Corrosion products Cost corrosion products

Metal Alloy Coatings: Alloy coatings can enhance protective performance in CO₂ environments. Ni–P (Phosphorus) coatings achieve a corrosion inhibition rate of over 80% in supercritical CO₂ environments containing H₂O–O₂–NO₂ impurities.

Protection mechanism of Ni-P coatings in supercritical CO₂ environment (SUN, et al. ACS Applied Materials & Interfaces, 2019, 11(17): 16243-16251)

li-W	(Τι	ungster	ר)	coating	
ave	exh	ibited	cr	acking	
Inder	CO_2	-EOR	do	wnhole	
onditio	ons,	with	sig	nificant	
mount	t of	corros	sive	media	
ntering the annulus.					

3. Results and Discussion Intentional Corrosion Inhibition

SEM images of Ni-W coating, N80 and 13Cr steel after corrosion in rich aqueous phase for 72 h at 8 MPa, 35 °C and different Cl⁻ concentrations (a) Ni-W coating-1 g/L (b) 13Cr-1g/L (c) N80-1g/L (d) Ni-W coating-5 g/L (e) 13Cr-5 g/L (f) N80-5 g/L (g) Ni-W plating-10 g/L (h) 13Cr-10 g/L (i) N80-10 g/L

Corrosion rate plots of Ni-W coating, N80 and 13Cr steel after 72 h of corrosion in rich aqueous phase at 8 MPa, 35°C and different Cl⁻ concentrations

- The Ni-W coating consistently maintains a low corrosion rate at different sodium chloride concentrations.
- Ni-W coating surface almost had no obvious corrosion products. 13Cr steel surface had a small amount of products. Corrosion of N80 carbon steel was severe.

Coating protection technology

- Organic polymer-based coatings: organic coatings offer numerous advantages, including a wide variety of types, ease of application, and high performance cost ratio.
- Traditional organic coatings exhibit poor stability in SC-CO₂ and even show significant permeability under harsh conditions.
- The failure of organic coatings in medium- to high-pressure CO₂ environments is mainly manifested through local blistering, overall blistering, and non-blistering failure phenomena.

Blistering of the coating was observed under a high-pressure environment at 110 °C (Sun, et al. Surface Technology 51 (2022) 43–52)

Organic coatings are characterized by low cost; however, this kind of CO₂ corrosion protection coatings are still in the exploratory state (with several applications in the U.S). Further research and development are needed to create organic coating systems capable of withstanding harsh CO₂ environments.

3. Results and Discussion Intentional Corrosion Inhibition

Carbon Capture System Corrosion Inhibitors

Organic Amine Trap System Corrosion Inhibitors Summary (Zhao et al., Separation and Purification Technology, 2023)

Name	Inhibitor Type	Material	Condition	Organic Molecule Structure Diagram	Main Conclusion
Na ₂ SO ₃	cathodic	Carbon Steel	MDEA Acid Solution		Removes oxygen
Sodium Sulfite	cathodic	Carbon Steel 1020	$0.565 \text{ mol CO}_2/\text{mol MEA}$		Inhibition efficiency close to 80%
Long-chain Fatty Amine	cathodic	Carbon Steel 1020	0.565 mol CO ₂ /mol MEA	—	Inhibition efficiency close to 80%
CuCO ₃	Anodic	Carbon Steel 1018	MEA Acid Solution		Inhibition efficiency ≥ 80%
VND	Anodic	Carbon Steel 1020	MEA Acid Solution		High inhibition efficiency and stability
Tannic Acid	Anodic	Carbon Steel 1020	0.565 mol CO ₂ /mol MEA		High inhibition performance (up to 92%)
Na ₂ S	Anodic	Carbon Steel A36	MEA Acid Solution		Inhibition rate: 96.7%
Na ₂ S ₂ O ₃	Anodic	Carbon Steel A36	MEA Acid Solution	CH ₃ NOOOH CH ₃ CH ₃	Inhibition rate: 91.3%
2-[2-(Dimethylamino)ethyl] Ethanol	Mixed	API X120 Steel	CO ₂ and 3.5 wt% NaCl Solution		87.75% inhibition rate at 25°C
2-Mercaptobenzothiazole (MBT)	Mixed	Carbon Steel 316	MEA Acid Solution		It works at low temperature with 100 ppm
1-Vinyl-3-methylimidazolium tris(fluoromethanesulfonyl)methi de	Mixed	Soft Steel	Ionic Solution	[Cnmim]TCM,n=2、4、6和8	Inhibition efficiency increases with alkyl chain length
N-[2-(2-aminoethyl)aminoethyl]- 9-octadecylamine	Mixed	Carbon Steel 1018	CO ₂ -saturated 5% NaCl Solution	munh	Inhibition efficiency depends on temperature and concentration
Methyltetrahydrophthalic Acid (MTI)	Mixed	Carbon Steel 1018	MEA Acid Solution	H ₀ C ^{-S}	MTI is a mixed inhibitor

3. Results and Discussion Intentional Corrosion Inhibition

Supercritical CO₂ corrosion inhibitor

• Common supercritical phase corrosion inhibitors are: **imidazolines**, **quaternary ammonium salts**, **organic amines**, **organic acids**, **thiosulfates**, **volatile corrosion inhibitors**.

Report Outline

01020304Research
GroupResearch
BackgroundResults and
DiscussionConclusions
and Prospects

Conclusions:

- In the capture system, the corrosion rate of carbon steel in degraded organic amine solution for a period of time was significantly lower than that in the fresh solution, which was related to the adsorption of degradation products.
- Low concentrations of SO₂ during transportation and storage systems initially reduce the corrosion rate which is related to the generation of FeS. In the weld joint region FeS is more inclined to be generated on the BM.
- Imidazolines and quaternary ammonium salts as the main corrosion inhibitor is current commonly used highpressure CO₂ corrosion inhibitors, while the metal coating is also an important means of corrosion protection.

Prospects:

- In the capture process there will be a variety of impurities, the corrosion mechanism of these impurities on the pipeline system, injection tubing, production tubing and storage well is a future concern.
- In the future, developing an environmentally friendly and highly efficient corrosion inhibitors and protective coating systems will be crucial in addressing the corrosion issues of CCUS systems.

Thank you!

Yong Xiang

E-mail: xiangy@cup.edu.cn